Effect of Nano-TiO2 on Capillary Water Absorption of Recycled Aggregate Concrete

نویسندگان

چکیده

To improve the durability performance of recycled aggregate concrete in actual use, this paper uses nano-TiO2-modified coarse to study, through experiments, effects nano-TiO2 on pore distribution after freeze–thaw. The capillary-water-absorption law was used as evaluation index. prepared with different contents nano-TiO2, and changes 24 h capillary water absorption porosity freeze–thaw cycles were analysed. With help high-resolution image recognition binary-image-processing technology, before obtained. Through analysis water-absorption data at times, initial rate, S1, is reacted prediction model under established. results show that action cycles, increases increase RCA substitution rate decreases content. After 150 cumulative RC25-NT1.2 decreased by 25.52% 14.57%, respectively, compared test block without nanomaterials. It found has a prominent role modifying concrete. Nano-TiO2 can reduce alleviate negative impact cycles. observed scanning electron microscopy large amount C–S–H gel produced inside mixed which bonded internal pores cracks form dense structure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate parti...

متن کامل

Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate parti...

متن کامل

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and...

متن کامل

Reactivity in Recycled Concrete Aggregate

Full scale tests with crushed concrete used in sub-bases in roads show that the material has capacity to reharden, very slowly but also after prolonged periods of time. The rehardening process in crushed concrete aggregate has been analysed with a thermogravimetric method, comparing the change in chemical composition in the aggregate when set with water, compacted and hardened. It has been show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Coatings

سال: 2022

ISSN: ['2079-6412']

DOI: https://doi.org/10.3390/coatings12121833